Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers

نویسندگان

  • Soley Gudbergsdottir
  • Ling Deng
  • Zhengjun Chen
  • Jaide V K Jensen
  • Linda R Jensen
  • Qunxin She
  • Roger A Garrett
چکیده

The adaptive immune CRISPR/Cas and CRISPR/Cmr systems of the crenarchaeal thermoacidophile Sulfolobus were challenged by a variety of viral and plasmid genes, and protospacers preceded by different dinucleotide motifs. The genes and protospacers were constructed to carry sequences matching individual spacers of CRISPR loci, and a range of mismatches were introduced. Constructs were cloned into vectors carrying pyrE/pyrF genes and transformed into uracil auxotrophic hosts derived from Sulfolobus solfataricus P2 or Sulfolobus islandicus REY15A. Most constructs, including those carrying different protospacer mismatches, yielded few viable transformants. These were shown to carry either partial deletions of CRISPR loci, covering a broad spectrum of sizes and including the matching spacer, or deletions of whole CRISPR/Cas modules. The deletions occurred independently of whether genes or protospacers were transcribed. For family I CRISPR loci, the presence of the protospacer CC motif was shown to be important for the occurrence of deletions. The results are consistent with a low level of random dynamic recombination occurring spontaneously, either inter-genomically or intra-genomically, at the repeat regions of Sulfolobus CRISPR loci. Moreover, the relatively high incidence of single-spacer deletions observed for S. islandicus suggests that an additional more directed mechanism operates in this organism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRISPR-Cas: the effective immune systems in the prokaryotes

Approximately all sequenced archaeal and half of eubacterial genomes have some sort of adaptive immune system, which enables them to target and cleave invading foreign genetic elements by an RNAi-like pathway. CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems consist of the CRISPR loci with multiple copies of a short repeat sequence separa...

متن کامل

Synthesis a New Viral Base Vector Carrying Single Guide RNA (sgRNA) and Green Florescent Protein (GFP)

CRISPR/Cas9 system is a powerful gene editing tool in vivo and in vitro. Currently, CRISPR/Cas9 delivery cells or tissue with different vehicles are available, and Adeno- associated virus (AAV) in one of them. Due to AAV packaging size limitation, AAV base vectors that carry CRISPR/Cas9 system do not have florescent tag like GFP for simple detection and navigation of cells, containing AAV. The ...

متن کامل

The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes

Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the ...

متن کامل

CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b

CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their ex...

متن کامل

Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus

CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2011